Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 34(17-18): 947-957, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624737

RESUMO

Adeno-associated virus (AAV) is a powerful gene therapy vector that has been used in several FDA-approved therapies as well as in multiple clinical trials. This vector has high therapeutic versatility with the ability to deliver genetic payloads to a variety of human tissue types, yet there is currently a lack of transgene expression control once the virus is administered. There are also times when transgene expression is too low for the desired therapeutic outcome, necessitating high viral dose administration resulting in possible immunological complications. Herein, we validate a chemically controllable AAV transgene expression technology in vitro that utilizes bifunctional molecules known as chemical epigenetic modifiers (CEMs). These compounds employ endogenous epigenetic machinery to specifically enhance transgene expression of episomal DNA. A recombinant AAV (rAAV) was designed to both deliver the reporter transgene as well as deliver a synthetic zinc finger (ZFs) protein fused to FK506 binding protein (FKBP). These synthetic ZFs target a DNA-binding array sequence upstream of the promoter expressing the AAV transgene to specifically enhance AAV transgene expression in the presence of a CEM. The transcriptional activating compound CEM87 functions by recruiting the epigenetic transcription activator bromodomain-containing protein 4 (BRD4), increasing AAV transgene activity up to fivefold in a dose-dependent manner in HEK293T cells. The highest levels of transgene product activity are seen 24 h following CEM87 treatment. Additionally, the CEM87-mediated enhancement of different transgene products with either Luciferase or green fluorescent protein (GFP) was observed in multiple cell lines and enhancement of transgene expression was capsid serotype independent. The impact of CEM87 activity can be disrupted through drug removal or chemical recruitment site competition with FK506, thus demonstrating the reversibility of the impact of CEM87 on transgene expression. Collectively, this chemically controllable rAAV transgene technology provides temporal gene expression control that could increase the safety and efficiency of AAV-based research and therapies.


Assuntos
Dependovirus , Epigênese Genética , Humanos , Dependovirus/genética , Células HEK293 , Proteínas Nucleares , Fatores de Transcrição , Proteínas de Ciclo Celular
2.
PNAS Nexus ; 2(4): pgad062, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020498

RESUMO

Gene regulation plays essential roles in all multicellular organisms, allowing for different specialized tissue types to be generated from a complex genome. Heterochromatin-driven gene repression, associated with a physical compaction of the genome, is a pathway involving core components that are conserved from yeast to human. Posttranslational modification of chromatin is a critical component of gene regulation. Specifically, tri-methylation of the nucleosome component histone 3 at lysine 9 (H3K9me3) is a key feature of this pathway along with the hallmark heterochromatin protein 1 (HP1). Histone methyltransferases are recruited by HP1 to deposit H3K9me3 marks which nucleate and recruit more HP1 in a process that spreads from the targeting site to signal for gene repression. One of the enzymes recruited is SETDB1, a methyltransferase which putatively catalyzes posttranslational methylation marks on H3K9. To better understand the contribution of SETDB1 in heterochromatin formation, we downregulated SETDB1 through knockdown by a dCas9-KRAB system and examined heterochromatin formation in a chromatin in vivo assay (CiA-Oct4). We studied the contribution of SETDB1 to heterochromatin formation kinetics in a developmentally crucial locus, Oct4. Our data demonstrate that SETDB1 reduction led to a delay in both gene silencing and in H3K9me3 accumulation. Importantly, SETDB1 knockdown to a ∼50% level did not stop heterochromatin formation completely. Particle-based Monte Carlo simulations in 3D space with explicit representation of key molecular processes enabled the elucidation of how SETDB1 downregulation affects the individual molecular processes underlying heterochromatin formation.

3.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672260

RESUMO

The expression of genetic information is tightly controlled by chromatin regulatory proteins, including those in the heterochromatin gene repression family. Many of these regulatory proteins work together on the chromatin substrate to precisely regulate gene expression during mammalian development, giving rise to many different tissues in higher organisms from a fixed genomic template. Here we identify and characterize the interactions of two related heterochromatin regulatory proteins, heterochromatin protein 1 alpha (HP1α) and M-phase phosphoprotein 8 (MPP8), with hepatoma-derived growth factor-related protein 2 (HRP2). We find in biochemical experiments that HRP2 copurifies and co-sediments with heterochromatin-associated proteins, including HP1α and MPP8. Using the Chromatin in vivo Assay in multiple cell types, we demonstrate that HP1α-mediated gene repression dynamics are altered by the presence of HRP2. Furthermore, the knockout of HRP2 in MDA-MB-231 cells results in significant changes to chromatin structure and stability, which alter gene expression patterns. Here, we detail a mechanism by which HRP2 contributes to epigenetic transcriptional regulation through engagement with heterochromatin-associated proteins to stabilize the chromatin landscape and influence gene expression.


Assuntos
Proteínas Cromossômicas não Histona , Heterocromatina , Animais , Proteínas Cromossômicas não Histona/metabolismo , Cromatina , Homólogo 5 da Proteína Cromobox , Fatores de Transcrição/metabolismo , Mamíferos/metabolismo
4.
iScience ; 25(7): 104590, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800764

RESUMO

Heterochromatin is a physical state of the chromatin fiber that maintains gene repression during cell development. Although evidence exists on molecular mechanisms involved in heterochromatin formation, a detailed structural mechanism of heterochromatin formation needs a better understanding. We made use of a simple Monte Carlo simulation model with explicit representation of key molecular events to observe molecular self-organization leading to heterochromatin formation. Our simulations provide a structural interpretation of several important traits of the heterochromatinization process. In particular, this study provides a depiction of how small amounts of HP1 are able to induce a highly condensed chromatin state through HP1 dimerization and bridging of sequence-remote nucleosomes. It also elucidates structural roots of a yet poorly understood phenomenon of a nondeterministic nature of heterochromatin formation and subsequent gene repression. Experimental chromatin in vivo assay provides an unbiased estimate of time scale of repressive response to a heterochromatin-triggering event.

5.
ACS Synth Biol ; 11(4): 1397-1407, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35302756

RESUMO

CRISPR-Cas9 systems have been developed to regulate gene expression by using either fusions to epigenetic regulators or, more recently, through the use of chemically mediated strategies. These approaches have armed researchers with new tools to examine the function of proteins by intricately controlling expression levels of specific genes. Here we present a CRISPR-based chemical approach that uses a new chemical epigenetic modifier (CEM) to hone to a gene targeted with a catalytically inactive Cas9 (dCas9) bridged to an FK506-binding protein (FKBP) in mammalian cells. One arm of the bifunctional CEM recruits BRD4 to the target site, and the other arm is composed of a bumped ligand that binds to a mutant FKBP with a compensatory hole at F36V. This bump-and-hole strategy allows for activation of target genes in a dose-dependent and reversible fashion with increased specificity and high efficacy, providing a new synthetic biology approach to answer important mechanistic questions in the future.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
6.
ACS Chem Biol ; 16(9): 1721-1736, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34415726

RESUMO

The interpretation of histone post-translational modifications (PTMs), specifically lysine methylation, by specific classes of "reader" proteins marks an important aspect of epigenetic control of gene expression. Methyl-lysine (Kme) readers often regulate gene expression patterns through the recognition of a specific Kme PTM while participating in or recruiting large protein complexes that contain enzymatic or chromatin remodeling activity. Understanding the composition of these Kme-reader-containing protein complexes can serve to further our understanding of the biological roles of Kme readers, while small molecule chemical tools can be valuable reagents in interrogating novel protein-protein interactions. Here, we describe our efforts to target the chromodomain of M-phase phosphoprotein 8 (MPP8), a member of the human silencing hub (HUSH) complex and a histone 3 lysine 9 trimethyl (H3K9me3) reader that is vital for heterochromatin formation and has specific roles in cancer metastasis. Utilizing a one-bead, one-compound (OBOC) combinatorial screening approach, we identified UNC5246, a peptidomimetic ligand capable of interacting with the MPP8 chromodomain in the context of the HUSH complex. Additionally, a biotinylated derivative of UNC5246 facilitated chemoproteomics studies which revealed hepatoma-derived growth factor-related protein 2 (HRP2) as a novel protein associated with MPP8. HRP2 was further shown to colocalize with MPP8 at the E-cadherin gene locus, suggesting a possible role in cancer cell plasticity.


Assuntos
Proteínas de Ciclo Celular/química , Peptidomiméticos/química , Fosfoproteínas/química , Proteínas de Ciclo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Histonas/química , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Lisina/química , Espectrometria de Massas , Metilação , Modelos Moleculares , Peptidomiméticos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteômica , Relação Estrutura-Atividade
7.
Nat Commun ; 11(1): 5647, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159050

RESUMO

The human Immunodeficiency Centromeric Instability Facial Anomalies (ICF) 4 syndrome is a severe disease with increased mortality caused by mutation in the LSH gene. Although LSH belongs to a family of chromatin remodeling proteins, it remains unknown how LSH mediates its function on chromatin in vivo. Here, we use chemical-induced proximity to rapidly recruit LSH to an engineered locus and find that LSH specifically induces macroH2A1.2 and macroH2A2 deposition in an ATP-dependent manner. Tethering of LSH induces transcriptional repression and silencing is dependent on macroH2A deposition. Loss of LSH decreases macroH2A enrichment at repeat sequences and results in transcriptional reactivation. Likewise, reduction of macroH2A by siRNA interference mimicks transcriptional reactivation. ChIP-seq analysis confirmed that LSH is a major regulator of genome-wide macroH2A distribution. Tethering of ICF4 mutations fails to induce macroH2A deposition and ICF4 patient cells display reduced macroH2A deposition and transcriptional reactivation supporting a pathogenic role for altered marcoH2A deposition. We propose that LSH is a major chromatin modulator of the histone variant macroH2A and that its ability to insert marcoH2A into chromatin and transcriptionally silence is disturbed in the ICF4 syndrome.


Assuntos
DNA Helicases/metabolismo , Histonas/metabolismo , Doenças da Imunodeficiência Primária/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , DNA Helicases/genética , Regulação para Baixo , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Doenças da Imunodeficiência Primária/enzimologia , Doenças da Imunodeficiência Primária/genética , Transcrição Gênica
8.
Nucleic Acids Res ; 48(17): 9415-9432, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658293

RESUMO

Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.


Assuntos
Nucleossomos/metabolismo , Proteínas/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Sítios de Ligação , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metáfase , Mutação , Proteômica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023873

RESUMO

Proper regulation of the chromatin landscape is essential for maintaining eukaryotic cell identity and diverse cellular processes. The importance of the epigenome comes, in part, from the ability to influence gene expression through patterns in DNA methylation, histone tail modification, and chromatin architecture. Decades of research have associated this process of chromatin regulation and gene expression with human diseased states. With the goal of understanding how chromatin dysregulation contributes to disease, as well as preventing or reversing this type of dysregulation, a multidisciplinary effort has been launched to control the epigenome. Chemicals that alter the epigenome have been used in labs and in clinics since the 1970s, but more recently there has been a shift in this effort towards manipulating the chromatin landscape in a locus-specific manner. This review will provide an overview of chromatin biology to set the stage for the type of control being discussed, evaluate the recent technological advances made in controlling specific regions of chromatin, and consider the translational applications of these works.


Assuntos
Cromatina/genética , Epigênese Genética , Metilação de DNA , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos
10.
Nat Biotechnol ; 38(1): 50-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712774

RESUMO

Gene expression can be activated or suppressed using CRISPR--Cas9 systems. However, tools that enable dose-dependent activation of gene expression without the use of exogenous transcription regulatory proteins are lacking. Here we describe chemical epigenetic modifiers (CEMs) designed to activate the expression of target genes by recruiting components of the endogenous chromatin-activating machinery, eliminating the need for exogenous transcriptional activators. The system has two parts: catalytically inactive Cas9 (dCas9) in complex with FK506-binding protein (FKBP) and a CEM consisting of FK506 linked to a molecule that interacts with cellular epigenetic machinery. We show that CEMs upregulate gene expression at target endogenous loci up to 20-fold or more depending on the gene. We also demonstrate dose-dependent control of transcriptional activation, function across multiple diverse genes, reversibility of CEM activity and specificity of our best-in-class CEM across the genome.


Assuntos
Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas de Ciclo Celular/metabolismo , Epigênese Genética , Genoma Humano , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
11.
Nat Genet ; 51(12): 1714-1722, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784732

RESUMO

Core regulatory transcription factors (CR TFs) orchestrate the placement of super-enhancers (SEs) to activate transcription of cell-identity specifying gene networks, and are critical in promoting cancer. Here, we define the core regulatory circuitry of rhabdomyosarcoma and identify critical CR TF dependencies. These CR TFs build SEs that have the highest levels of histone acetylation, yet paradoxically the same SEs also harbor the greatest amounts of histone deacetylases. We find that hyperacetylation selectively halts CR TF transcription. To investigate the architectural determinants of this phenotype, we used absolute quantification of architecture (AQuA) HiChIP, which revealed erosion of native SE contacts, and aberrant spreading of contacts that involved histone acetylation. Hyperacetylation removes RNA polymerase II (RNA Pol II) from core regulatory genetic elements, and eliminates RNA Pol II but not BRD4 phase condensates. This study identifies an SE-specific requirement for balancing histone modification states to maintain SE architecture and CR TF transcription.


Assuntos
Histonas/metabolismo , Rabdomiossarcoma/genética , Fatores de Transcrição/genética , Acetilação , Benzamidas/farmacologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos Facilitadores Genéticos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Humanos , Piridinas/farmacologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estabilidade de RNA , Fatores de Transcrição SOXE/genética , Análise de Célula Única
12.
PLoS Pathog ; 15(8): e1007988, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31386698

RESUMO

Adeno-associated viruses (AAV) are Dependoparvoviruses that have shown promise as recombinant vectors for gene therapy. While infectious pathways of AAV are well studied, gaps remain in our understanding of host factors affecting vector genome expression. Here, we map the role of ring finger protein 121 (RNF121), an E3 ubiquitin ligase, as a key regulator of AAV genome transcription. CRISPR-mediated knockout of RNF121 (RNF121 KO) in different cells markedly decreased AAV transduction regardless of capsid serotype or vector dose. Recombinant AAV transduction is partially rescued by overexpressing RNF121, but not by co-infection with helper Adenovirus. Major steps in the AAV infectious pathway including cell surface binding, cellular uptake, nuclear entry, capsid uncoating and second strand synthesis are unaffected. While gene expression from transfected plasmids or AAV genomes is unaffected, mRNA synthesis from AAV capsid-associated genomes is markedly decreased in RNF121 KO cells. These observations were attributed to transcriptional arrest as corroborated by RNAPol-ChIP and mRNA half-life measurements. Although AAV capsid proteins do not appear to be direct substrates of RNF121, the catalytic domain of the E3 ligase appears essential. Inhibition of ubiquitin-proteasome pathways revealed that blocking Valosin Containing Protein (VCP/p97), which targets substrates to the proteasome, can selectively and completely restore AAV-mediated transgene expression in RNF121 KO cells. Expanding on this finding, transcriptomic and proteomic analysis revealed that the catalytic subunit of DNA PK (DNAPK-Cs), a known activator of VCP, is upregulated in RNF121 KO cells and that the DNA damage machinery is enriched at sites of stalled AAV genome transcription. We postulate that a network of RNF121, VCP and DNA damage response elements function together to regulate transcriptional silencing and/or activation of AAV vector genomes.


Assuntos
Carcinoma Hepatocelular/virologia , Proteína Quinase Ativada por DNA/metabolismo , Dependovirus/genética , Genoma Viral , Proteínas de Membrana/metabolismo , Transdução Genética , Proteína com Valosina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteína Quinase Ativada por DNA/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteoma , Transcriptoma , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Ubiquitinação , Proteína com Valosina/genética , Internalização do Vírus
13.
PLoS One ; 14(7): e0217699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269077

RESUMO

Durable gene silencing through the formation of compact heterochromatin domains plays a critical role during mammalian development in establishing defined tissues capable of retaining cellular identity. Hallmarks of heterochromatin gene repression are the binding of heterochromatin protein 1 (HP1), trimethylation of lysine 9 on histone H3 (H3K9me3) and the methylation of cytosine residues of DNA. HP1 binds directly to the H3K9me3 histone modification, and while DNA methyltransferases have been found in complex with histone methyltransferases and HP1, there remains much to be known about the relationship between DNA sequence and HP1 in differentiated mammalian cells. To further explore this interplay in a controlled system, we designed a system to test the effect of promoter CpG content on the formation kinetics and memory of an HP1-mediated heterochromatin domain in mouse embryo fibroblasts (MEF)s. To do this, we have constructed a side-by-side comparison of wild-type (CpGFull) and CpG-depleted (CpGDep) promoter-driven reporter constructs in the context of the Chromatin in vivo Assay (CiA), which uses chemically-induced proximity (CIP) to tether the chromoshadow domain of HP1α (csHP1α) to a fluorescent reporter gene in a reversible, chemically-dependent manner. By comparing the response of CpGFull and CpGDep reporter constructs, we discovered that the heterochromatin formation by recruitment of csHP1α is unaffected by the underlying CpG dinucleotide content of the promoter, as measured by the velocity of gene silencing or enrichment of H3K9me3 at the silenced gene. However, recovery from long-term silencing is measurably faster in the CpG-depleted reporter lines. These data provide evidence that the stability of the HP1 heterochromatin domain is reliant on the underlying DNA sequence. Moreover, these cell lines represent a new modular system with which to study the effect of the underlying DNA sequences on the efficacy of epigenetic modifiers.


Assuntos
Ilhas de CpG , Embrião de Mamíferos/metabolismo , Epigênese Genética , Fibroblastos/metabolismo , Heterocromatina/metabolismo , Regiões Promotoras Genéticas , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Camundongos
14.
Stem Cell Res ; 38: 101470, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170660

RESUMO

Here we utilized the chromatin in vivo assay (CiA) mouse platform to directly examine the epigenetic barriers impeding the activation of the CiA:Oct4 allele in mouse embryonic fibroblasts (MEF)s when stimulated with a transcription factor. The CiA:Oct4 allele contains an engineered EGFP reporter replacing one copy of the Oct4 gene, with an upstream Gal4 array in the promoter that allows recruitment of chromatin modifying machinery. We stimulated gene activation of the CiA:Oct4 allele by binding a transcriptional activator to the Gal4 array. As with cellular reprograming, this process is inefficient with only a small percentage of the cells re-activating CiA:Oct4 after weeks. Epigenetic barriers to gene activation potentially come from heavy DNA methylation, histone deacetylation, chromatin compaction, and other posttranslational marks (PTM) at the differentiated CiA:Oct4 allele in MEFs. Using this platform, we performed a high-throughput chemical screen for compounds that increased the efficiency of activation. We found that Azacytidine and newer generation histone deacetylase (HDAC) inhibitors were the most efficient at facilitating directed transcriptional activation of this allele. We found one hit form our screen, Mocetinostat, improved iPSC generation under transcription factor reprogramming conditions. These results separate individual allele activation from whole cell reprograming and give new insights that will advance tissue engineering.


Assuntos
Alelos , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Ativação Transcricional , Animais , Cromatina/genética , Inibidores de Histona Desacetilases , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Fator 3 de Transcrição de Octâmero/genética
15.
SLAS Discov ; 24(8): 802-816, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145866

RESUMO

Heterochromatin protein 1 (HP1) facilitates the formation of repressive heterochromatin domains by recruiting histone lysine methyltransferase enzymes to chromatin, resulting in increased levels of histone H3K9me3. To identify chemical inhibitors of the HP1-heterochromatin gene repression pathway, we combined a cell-based assay that utilized chemical-mediated recruitment of HP1 to an endogenous active gene with high-throughput flow cytometry. Here we characterized small molecule inhibitors that block HP1-mediated heterochromatin formation. Our lead compounds demonstrated dose-dependent inhibition of HP1-stimulated gene repression and were validated in an orthogonal cell-based system. One lead inhibitor was improved by a change in stereochemistry, resulting in compound 2, which was further used to decouple the inverse relationship between H3K9 and H3K4 methylation states. We identified molecular components that bound compound 2, either directly or indirectly, by chemical affinity purification with a biotin-tagged derivative, followed by quantitative proteomic techniques. In summary, our pathway-based chemical screening approach resulted in the discovery of new inhibitors of HP1-mediated heterochromatin formation while identifying exciting new molecular interactions in the pathway to explore in the future. This modular platform can be expanded to test a wide range of chromatin modification pathways yielding inhibitors that are cell permeable and function in a physiologically relevant setting.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo , Descoberta de Drogas , Heterocromatina/efeitos dos fármacos , Heterocromatina/metabolismo , Ensaios de Triagem em Larga Escala , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Cromatografia Líquida , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Descoberta de Drogas/métodos , Citometria de Fluxo , Heterocromatina/genética , Histonas/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Estrutura Molecular , Fosfoproteínas/metabolismo , Ligação Proteica , Proteômica/métodos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
16.
Sci Rep ; 9(1): 4802, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886160

RESUMO

Deferiprone (DFP) is a hydroxypyridinone-derived iron chelator currently in clinical use for iron chelation therapy. DFP has also been known to elicit antiproliferative activities, yet the mechanism of this effect has remained elusive. We herein report that DFP chelates the Fe2+ ion at the active sites of selected iron-dependent histone lysine demethylases (KDMs), resulting in pan inhibition of a subfamily of KDMs. Specifically, DFP inhibits the demethylase activities of six KDMs - 2A, 2B, 5C, 6A, 7A and 7B - with low micromolar IC50s while considerably less active or inactive against eleven KDMs - 1A, 3A, 3B, 4A-E, 5A, 5B and 6B. The KDM that is most sensitive to DFP, KDM6A, has an IC50 that is between 7- and 70-fold lower than the iron binding equivalence concentrations at which DFP inhibits ribonucleotide reductase (RNR) activities and/or reduces the labile intracellular zinc ion pool. In breast cancer cell lines, DFP potently inhibits the demethylation of H3K4me3 and H3K27me3, two chromatin posttranslational marks that are subject to removal by several KDM subfamilies which are inhibited by DFP in cell-free assay. These data strongly suggest that DFP derives its anti-proliferative activity largely from the inhibition of a sub-set of KDMs. The docked poses adopted by DFP at the KDM active sites enabled identification of new DFP-based KDM inhibitors which are more cytotoxic to cancer cell lines. We also found that a cohort of these agents inhibited HP1-mediated gene silencing and one lead compound potently inhibited breast tumor growth in murine xenograft models. Overall, this study identified a new chemical scaffold capable of inhibiting KDM enzymes, globally changing histone modification profiles, and with specific anti-tumor activities.


Assuntos
Deferiprona/farmacologia , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Ensaios Enzimáticos , Inibidores Enzimáticos/uso terapêutico , Feminino , Código das Histonas/efeitos dos fármacos , Histona Desmetilases/química , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Neoplasias/genética , Neoplasias/patologia , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Cell ; 73(1): 61-72.e3, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472189

RESUMO

Recent studies have indicated that nucleosome turnover is rapid, occurring several times per cell cycle. To access the effect of nucleosome turnover on the epigenetic landscape, we investigated H3K79 methylation, which is produced by a single methyltransferase (Dot1l) with no known demethylase. Using chemical-induced proximity (CIP), we find that the valency of H3K79 methylation (mono-, di-, and tri-) is determined by nucleosome turnover rates. Furthermore, propagation of this mark is predicted by nucleosome turnover simulations over the genome and accounts for the asymmetric distribution of H3K79me toward the transcriptional unit. More broadly, a meta-analysis of other conserved histone modifications demonstrates that nucleosome turnover models predict both valency and chromosomal propagation of methylation marks. Based on data from worms, flies, and mice, we propose that the turnover of modified nucleosomes is a general means of propagation of epigenetic marks and a determinant of methylation valence.


Assuntos
Metilação de DNA , Epigênese Genética , Genoma , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Montagem e Desmontagem da Cromatina , Simulação por Computador , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Células Jurkat , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Modelos Genéticos , Método de Monte Carlo , Nucleossomos/genética
18.
J Vis Exp ; (139)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30295665

RESUMO

Regulation of chromatin compaction is an important process that governs gene expression in higher eukaryotes. Although chromatin compaction and gene expression regulation are commonly disrupted in many diseases, a locus-specific, endogenous, and reversible method to study and control these mechanisms of action has been lacking. To address this issue, we have developed and characterized novel gene-regulating bifunctional molecules. One component of the bifunctional molecule binds to a DNA-protein anchor so that it will be recruited to an allele-specific locus. The other component engages endogenous cellular chromatin-modifying machinery, recruiting these proteins to a gene of interest. These small molecules, called chemical epigenetic modifiers (CEMs), are capable of controlling gene expression and the chromatin environment in a dose-dependent and reversible manner. Here, we detail a CEM approach and its application to decrease gene expression and histone tail acetylation at a Green Fluorescent Protein (GFP) reporter located at the Oct4 locus in mouse embryonic stem cells (mESCs). We characterize the lead CEM (CEM23) using fluorescent microscopy, flow cytometry, and chromatin immunoprecipitation (ChIP), followed by a quantitative polymerase chain reaction (qPCR). While the power of this system is demonstrated at the Oct4 locus, conceptually, the CEM technology is modular and can be applied in other cell types and at other genomic loci.


Assuntos
Cromatina/metabolismo , Epigenômica , Regulação da Expressão Gênica , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Acetilação , Animais , Imunoprecipitação da Cromatina , DNA/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Camundongos , Microscopia de Fluorescência , Transcrição Gênica
19.
Biochemistry ; 57(19): 2756-2761, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29658277

RESUMO

One of the most sensitive, time-consuming, and variable steps of chromatin immunoprecipitation (ChIP) is chromatin sonication. Traditionally, this process can take hours to properly sonicate enough chromatin for multiple ChIP assays. Further, the length of sheared DNA is often inconsistent. In order to faithfully measure chemical and structural changes at the chromatin level, sonication needs to be reliable. Thus, chromatin fragmentation by sonication represents a significant bottleneck to downstream quantitative analysis. To improve the consistency and efficiency of chromatin sonication, we developed and tested a cavitation enhancing reagent based on sonically active nanodroplets. Here, we show that nanodroplets increase sonication efficiency by 16-fold and provide more consistent levels of chromatin fragmentation. Using the previously characterized chromatin in vivo assay (CiA) platform, we generated two distinct chromatin states in order to test nanodroplet-assisted sonication sensitivity in measuring post-translational chromatin marks. By comparing euchromatin to chemically induced heterochromatin at the same CiA:Oct4 locus, we quantitatively measure the capability of our new sonication technique to resolve differences in chromatin structure. We confirm that nanodroplet-assisted sonication results are indistinguishable from those of samples processed with traditional sonication in downstream applications. While the processing time for each sample was reduced from 38.4 to 2.3 min, DNA fragment distribution sizes were significantly more consistent with a coefficient of variation 2.7 times lower for samples sonicated in the presence of nanodroplets. In conclusion, sonication utilizing the nanodroplet cavitation enhancement reagent drastically reduces the amount of processing time and provides consistently fragmented chromatin of high quality for downstream applications.


Assuntos
Imunoprecipitação da Cromatina/métodos , Fragmentação do DNA/efeitos da radiação , DNA/genética , Sonicação/métodos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/efeitos da radiação , DNA/química , DNA/efeitos da radiação , Eucromatina/efeitos da radiação , Heterocromatina/efeitos da radiação , Camundongos , Nanopartículas/química , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética
20.
Epigenetics ; 13(2): 173-181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28621576

RESUMO

Lsh is a chromatin remodeling factor that regulates DNA methylation and chromatin function in mammals. The dynamics of these chromatin changes and whether they are directly controlled by Lsh remain unclear. To understand the molecular mechanisms of Lsh chromatin controlled regulation of gene expression, we established a tethering system that recruits a Gal4-Lsh fusion protein to an engineered Oct4 locus through Gal4 binding sites in murine embryonic stem (ES) cells. We examined the molecular epigenetic events induced by Lsh binding including: histone modification, DNA methylation and chromatin accessibility to determine nucleosome occupancy before and after embryonic stem cell differentiation. Our results indicate that Lsh assists gene repression upon binding to the Oct4 promoter region. Furthermore, we detected less chromatin accessibility and reduced active histone modifications at the tethered site in undifferentiated ES, while GFP reporter gene expression and DNA methylation patterns remained unchanged at this stage. Upon differentiation, association of Lsh promotes transcriptional repression of the reporter gene accompanied by the increase of repressive histone marks and a gain of DNA methylation at distal and proximal Oct4 enhancer sites. Taken together, this approach allowed us to examine Lsh mediated epigenetic regulation as a dynamic process and revealed chromatin accessibility changes as the primary consequence of Lsh function.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Epigênese Genética , Fator 3 de Transcrição de Octâmero/genética , Animais , Células Cultivadas , Código das Histonas , Camundongos , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...